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Abstract--It is shown that spaual averaging of the local instantaneous conservauon laws for lnwsod 
incompressible dispersed flow yields identical results to equatmns obtmned from a variational princaple, 
in the dilute limit. The equations deduced from the vanational approach extend easily to the nondilute 
case. The drift flux concept reduces the 4 × 4 system of equataons to a 2 x 2 system wluch is cast into 
the framework of continuous Hamiltonian systems. The hypcrbohclty of the equations is examined and 
it is concluded that the system ts ill-posed for isotropic dispersions. It is then demonstrated that the model 
is Lyapunov stable, provided it is hyperbohc. 
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1. INTRODUCTION 

1.1. Background 

The approach to two-phase flow modelling that is now widely used in computer codes such as 
TRAC (see T R A C  P D 2  Manual  1982), RELAP 5 (Ransom et al. 1981). CATHARE (Micaelli 1987) 
or OLGA (Bendiksen et al. 1988) is based on averaging of the original local instantaneous 
conservation equations for mass, momentum and energy. Averaging may be done in time, space, 
over an ensemble or in some combination of these. Details may be found in Panton (1978), Vernier 
& Delhaye (1968), Bour~ et al. (1975), Ishii (1975), Yadigaroglu & Lahey (1976), Agee et al. (1978), 
Lyckowski (1978), Nigmatulin (1978, 1979), Banerjee & Chan (1980) and Drew (1983) amongst 
others. 

Averaging makes the mathematical aspect of the model more tractable, but in the process, 
information regarding local gradients is lost. Consequently, closure relations in terms of the 
averaged variables have to be supplied in order to model the local mass, momentum and energy 
transfer terms, both at the wall and at the interface. In the following, we are concerned with the 
derivation of these closure laws, or constitutive relations, in the case of dispersed incompressible 
two-phase flow. 

Incompressible dispersed flows constitute an interesting case study because they can be 
considered as an approximation to a number of two-phase flow situations, yet the corresponding 
phasic interaction terms are relatively well defined. In this case we concentrate on the potential flow 
approximation of dispersed flow, we show in particular that the complete set of constitutive 
relations reduces to: the virtual mass acceleration; the continuous phase velocity perturbation term, 
loosely called "Reynolds stress" here; and the difference between phasic and interracial pressure 
on the continuous phase side. 

It turns out that these three momentum transfer terms provide a complete picture of energy 
conserving momentum interaction terms, occurring in the specific situation of incompressible 
dispersed flows. Moreover, the analysis shows that these three terms have a common physical basis; 
the kinetic energy associated to the continuous phase velocity perturbation. 

While this conclusion is not very surprising, it turns out that these three interaction effects are 
generally studied rather independently from one another. Drew et al. (1979) have analyzed the 
virtual mass force from the point of view of material frame indifference. Voinov (1973) derived the 
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virtual mass force applied to a single sphere with infinite dilution. Biesheuvel & van Wijngaarden 
(1984) pointed out the importance of the Reynolds stress type terms or velocity distribution terms, 
and Pauchon & Banerjee (1986) showed that accounting for the phasic pressure difference leads 
to a model having real characteristics up to a critical void fraction, which was conjectured to signal 
the transition from the bubbly to slug flow regime. 

Wallis (1989) questioned the applicability of these models by performing simple tests on the 
various models. One of his conclusions was that by approaching each constitutive relation 
separately, some effects might be accounted for twice in the model formulation. The previously 
mentioned conclusion that the three momentum exchange terms have the same physical basis would 
seem to validate Wallis's point. However, we show by a variational approach that these three terms 
give a complete picture of the momentum interaction effects in the case of inviscid incompressible 
flow. 

Variational principles provide a powerful alternative for the derivation of the constitutive 
relations. Instead of averaging the local instantaneous equations of motion, we start from a 
macroscopic energy functional written in terms of the averaged variables. The equations of motion 
are then derived systematically from this energy functional. The traditional problem of deriving 
the macroscopic forces in terms of averaged variables is eluded, as long as the energy functional 
itself can be written in terms of the averaged variables. The remaining problem is to classify the 
terms appearing in the resulting equations of motion, in order to derive the constitutive relations 
which were identified but unresolved by the averaging approach. 

Thus, it is seen that the variational and averaging approach are complementary. The variational 
approach provides the analytical equations of motion explicitly, but in the process the physical 
significance of each of the individual terms is lost. The averaging approach does exactly the 
opposite: the physical meaning of each constitutive relation is generally understood, but their 
analytical form remains a priori unknown. The Lagrangian variational approach was used 
previously in the derivation of the equations of motion for dispersed mixtures by Geurst (1985a, b, 
1986). G-eurst presented conclusive results on the form of the virtual mass acceleration, he showed 
that the resulting acceleration is objective. 

The Hamiltonian formalism and Lyapunov stability of multiphase flows has been studied by 
Holm & Kupershmidt (1986a, b). Their analysis focuses on the local equations. While it is well 
known that a single pressure model is ill-posed, they show that the introduction of surface tension 
can provide Lyapunov stability. Furthermore, they show that the use of multiple pressures and the 
introduction of interracial terms can provide Lyapunov stability and hyperbolicity. We shall show 
that similar results can be achieved from averaged equations where the quantities associated with 
the interracial dynamics appear as closure relations of the averaged two-phase model. 

1.2. Summary 

This study is concerned with the propagation of void or concentration waves that occur in 
dispersed flows, e.g. gas bubbles in a liquid. In particular, we investigate the momentum 
interactions that occur when the two phases move relative to each other. To clarify these 
interactions, we will ignore the compressibility of both the gas and liquid phase, which are 
important in studying pressure wave propagation. Viscous forces and mass transfer between phases 
is also ignored in this study. We shall derive effective equations of motion for this mixture using 
both an averaging approach and variational principles. The outcome of the following study may 
be summarized as follows: 

• It has been demonstrated that, in the dilute limit, the equations of motion for a 
bubbly liquid obtained by volume averaging the local instantaneous conservation 
laws are the same as those deduced from a variational principle. The variational 
approach provides the equations of motion in the nondilute case. 

• It is shown that a correction term must be added to the virtual mass acceleration term 
for a single bubble given by Voinov (1973). The correction term accounts for the flux 
of bubbles crossing the averaging volume. The variational principle gives the form 
of this term for the nondilute case. 
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• The variational approach reveals that the Reynolds stress, the phasic pressure 
difference and the virtual mass acceleration are manifestations of the contribution 
by the relative motion to the overall kinetic energy of the system. 

• It is shown that the 4 x 4 system deduced using the two approaches simplifies to a 
2 x 2 system in terms of the drift flux and void fraction. The Hamiltonian structure 
of these equations is formulated and the relationship between Lyapunov stability and 
hyperbolicity is examined. It is found that the hyperbolicity is entirely determined 
by the form of the virtual mass. 

In more detail, section 2 begins with the volume-averaged instantaneous mass and momentum 
conservation equations. In the inviscid incompressible limit, the constitutive relations are identified. 
These relations are derived in the dilute limit by considering the motion of a single bubble in an 
unbounded liquid. 

Section 3 outlines the derivation of the equations of motion from a variational principle. The 
momentum conservation equations are written down with a single unknown coefficient m(Eo) of 
the kinetic energy associated with the velocity perturbations due to the presence of the dispersed 
phase. It is then shown that in the dilute limit these equations reduce to the equations obtained 
from averaging. 

The reduction of the system by use of the drift flux (Zuber 1964) is discussed in section 4. The 
resulting system is a 2 x 2 system in conservation law form. The Hamiltonian formalism for the 
reduced system is explicit. It is shown that the hyperbolicity condition reduces to the Lyapunov 
stability condition, and that this condition depends only on the virtual mass coefficient. In 
particular, the results imply that the equations of motion for isotropic dispersed flows are ill-posed. 

2. THE VOLUME-AVERAGED MODEL 

In this section we present the volume-averaged conservation laws for mass and momentum and 
the constitutive relations needed for closure. In the dilute limit of dispersed flow, we will derive 
the constitutive relations for the virtual mass acceleration, the velocity perturbation term and the 
phasic pressure difference term. 

2.1. Averaged conservation equations 

For a detailed account of the volume-averaging procedure, the reader is referred to Vernier & 
Delhaye (1968), Ishii (1975) and Banerjee &Chan (1980). Here we start our analysis from the mass 
and momentum conservation equations of field k, as defined by Banerjee &Chan (1980): 

&k &k(u~) 
- -  = 0  [ l a ]  

~t ~z 

and 

-- E~Pk(Fk" n~) -- (nk" n. ~p~), + (n~- (~k" n~)), + (n~" (~k" nk..))w, [lb] 

where 

( fk)  = 1 fkdV and ( f k ) , = ~  fkdS. 
i 

Equation [la] is the averaged mass conservation equation and [lb] expresses the conservation 
of momentum in the z-direction. Here Ek is the volume fraction of field k in the volume V, nk is 
the outward drawn normal vector on the surface of field, n~ is the unit vector in the z-direction, 
ai represents the interfacial area of field k and akw is the area of contact between field k and the 
wall (see also figure 1). The other variables are: Pk, the density; uk, the local velocity in the 
z-direction; Pk, the pressure; Xk, the shear stress tensor; and Fk, the body force. In analogy with 
bubbly flow systems, in the following we will use the subscript G for the dispersed phase or gas 
phase, and L for the continuous phase or liquid phase. The (u~ 2) term is loosely called the 
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Figure 1. A schematic drawing of the bubbly flow and the averaging volume. The averaging volume runs 
from z to z + H. The solid lines inside the bubbles that cross the averaging volume represent Ao(z ) and 
Ao(z + H). The outward drawn normals, no and n, are shown only once each but are understood to be 
given for all surfaces. The z '  slice is the coordinate used within the averaging volume. The mean flow is 

in the n,-direction 

Reynolds stress and will be discussed below. The Ap~ and Ap~ terms were introduced by Banerjee 
&Chan (1981) and are defined as: 

and 

Ap~ = _ v <p~ >, - <pk > [2] 
Q~ 

V 
Ap~ ~p~ - ~, <p~ >,. [3] 

Notice that [2] and [3] imply that the interfacial pressure has been decomposed as follows: 

p~ = <p,>  + Ap~ + Ap~. [4] 

This decomposition has the advantage of distinguishing the separate contributions in the 
momentum exchange terms as discussed below. Wallis (1990) presents a different approach. He 
focuses on the tensorial nature of the interfacial pressure. This aspect of the inteffacial pressure 
must also be present in [lb]; h o w e v e r ,  we  are only concerned with the net force produced by such 
a tensor and therefore do not examine this aspect of the interfacial pressure. 



MOMENTUM INTERACTIONS IN DISPERSED FLOW 69 

It is important to realize that [lb] is an exact spatial average of the Navier-Stokes equation for 
a mixture of two phases. Accounting for material crossing the averaging volume has been given 
proper consideration. The only approximation comes when trying to deduce constitutive relations 
to close the system. For a detailed derivation the reader is referred to Delhaye & Achard (1976). 

Let us discuss briefly the physical relevance of some of the terms in [lb]. In the steady-state 
creeping flow approximation, the term <nk'n2Ap~>, leads to the form drag. In the unsteady 
creeping flow approximation, this terms contains also the normal component of the Basset force, 
while the friction drag and the tangential component of the Basset force are included in the term 
(n2. (zk" nk)>, (e.g. Basset 1961). In the inviscid potential flow approximation, the interracial 
pressure integral leads also to the virtual mass and virtual buoyancy force. 

Together with the momentum transfer term associated to the term Ap~ &JOz, the interfacial 
pressure term <nk" n~ Ap~), and the viscous stress integrals <n~. (xk" nk)), constitute the set of terms 
representing momentum exchange between the phases. 

The <nk" n: Ap~, ), term is the "symmetric" virtual mass acceleration. By "symmetric" we mean 
that it occurs in both the dispersed and continuous phase momentum equations, with opposite 
signs. This term represents the momentum exchange between the phases and it must be symmetric 
i fpu = p~,  which is clear if it is borne in mind that there is no net force associated with this term. 
This idea is made more precise by the use of jump conditions (Banerjee & Chan 1980). 

In the inviscid incompressible approximation the momentum equation simplifies to 

0 0 >~ ~k<u~ 2> + ~k ap~ Tiz <nk" ' P~ ~Ek<Uk>+~Z ~k<Uk + ~Z = -  a, Ap~>,. [5] 

The <u~ 2) term represents the Reynolds stress term. Here we will consider only the Reynolds 
stress in the continuous phase which is due to the presence of the dispersed phase. In general, we 
have 

uk = <u~ > + u~; [6] 

we will take the mean flow to be in the z-direction, so we have <uk > -- <uk >n, and it then follows 
that 

<uk" uk > = <uk >~ + <u;? >, 

where u a = (u~,) 2 + (u~) 2 + (u~) 2. Therefore, to close the system [5], obtained by spatial averaging, 
it is necessary to obtain constitutive relations for the following quantities: 

(1) ap~.. 
(:) <nk" n, Ap;o >,. 
(3) <u~2>. 

2.2. Constitutive relations 

We begin by considering the gas bubbles moving as solid particles and we will assume that the 
bubbles have the same velocity inside the averaging volume. We will see that this assumption is 
implicit in the work of Geurst (1985a, b, 1986). This implies that 

<ug > = 0. [7] 

We will use the average interfacial pressure to define a bulk pressure in the gas phase as follows: 

<p~>=_v<p~,>, 1 fo a, = a~ Pc, dS. [8] 
i 

This definition will turn out to give the same results as the one used by Biesheuvel & van 
Wijngaarden (1984) and Wallis (1989). Interestingly, this notion of a bulk pressure has been used 
in the homogenization of Stokes flow around a bed of spheres by Lipton & Avellaneda (1990). This 
form of the bulk pressure gives 

ap~ = 0. [91 
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The determination of  (nk'nz Ap~), is more difficult. We shall ignore surface tension and 
therefore find PG, = PL,, which implies that 

(n G • n, Ap~, >, = - (nL" n~ Ap~., ), [10] 

since nL = --  nc. Also, p~  = PL, combined with Ap~ = 0 gives 

(PG > = (PL > + APL. [1 I] 

Below we present two derivations of  <nk" nz Ap~, >,. The first derivation follows directly from the 
averaging procedure. The second derivation infers (nG.n~Ap~l> , by a new interpretation of  
Voinov's (1973) computation of  the force on a bubble. 

The first derivation begins with the definition of  (nL" n~ Ap [, >1. We have 

lfo[pv ] (nL " n~ Api.,), = ~ LI- ~t (pL, 5, nL "n, dS, [12] 

where the integration is taken on all of  the bubble surfaces that are contained inside the averaging 
volume. Since (V/al)(pL,)t is a constant inside the averaging volume the second term only picks 
up contributions from the bubbles that cross the averaging volume. Indeed, one can show that 

1 f .  OE G -~ nL" nz d S  = t~z " 
I 

This follows from Delhaye & Archard (1976, equation [4.5]). Therefore, we have 

( n L ' n ' A p i ' ) ' = V  , p L ' n L ' n ' d S + p  , pL 'nL 'nz dS- -~  (pL'' '  t~z ' [13] 

where ~, are all the bubble surfaces that do not cross the averaging volume and ~, are bubble 
surfaces that do cross the averaging volume. In appendix A it is shown that: 0(v) 

-~ pL, n L ' n : d S = ~ z  EG~(PL,),  +h.o. t .  [141 
i 

and 

ira t~ (PL)  *ors, pL, nL " nz dS = E G t~z 4~-~3 pLtnG" n2 dS + h.o.t. [15] 
t 

By h.o.t, we mean terms that tend to zero as R -~ 0 for fixed EG and O(E2)terms. Here R is the 
bubble radius. By letting R ~ 0 we mean that'we are considering only length scales in the averaged 
equations that are much bigger than the bubble size. In [15] PL is the disturbance in the pressure 
field caused by the introduction of one sphere into the bubbly mixture. Substituting [14] and [15] 
into [13] gives 

eofe, 0 (nL.n~Ap~.~) = -~-R- ~ pL, nG.n, dS+eG~zApL,+h.o . t . ,  [16] 

where we have used [3] to eliminate (V/a,)(p~), .  In appendix B it is shown that 

fB ' --2-~'°3"~ ('D-GUG DL(UL))  +O(R5)'  
pL, nG'n~ dS --3 .... VL~ D t  Dt 

where R is the radius of the sphere and 

D k t9 t9 

Ot = ~t + U k ~Z " 

Using the last result combined with [7] and [16] gives us 

[DL (UL) DCD(__~G ) t~ ApL' , l ) + E G h.o.t. [17] (nL • n, Apt., ), = ] PLEG~" ~ - + 

There is an alternative way to infer [17]; however, it does not fit in directly with the averaging 
method. We include it here because it provides a simpler and perhaps more physical way to obtain 
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[17]. This is a new interpretation of  Voinov's (1973) result. Using his result Pauchon & Banerje¢ 
(1986) showed that the equation of  motion of  a single bubble in one space dimension in an arbitrary 
potential flow is given by 

Douo = apL _fDouG DLUL~ 
Dt az ~PL~" ~ - ~  ] + O(RS) • [18] Po 

In [18] the first term on the r.h.s, corresponds to the virtual buoyancy and the second term is 
commonly called the virtual mass acceleration. Clearly, from [5] this cannot be (no" n: Apc~ ~,. We 
identify [18] as the averaged gas momentum equation, as given by [5], using the fact that Apc~ ffi 0 

and PL ---- Po - -  APL~, We get 

Douo aPo , {Douo DLUL~ aAp~ 
P°e°---I)t+e° ~z Dt ] ~°--~--z = - ~ PLea [" - ~  + + h.o.t. 

Thus, it is apparent that the symmetrical virtual mass acceleration should be 

, i /DG<UG ) DL(UL) / aAPL, 
<nG'nzAp°l?'=2PcE°~ D-t Dt ~ ~ G ~  ~ h~o~t~ 

/ 

which is equivalent to [17], in view of [10]. The second term in [17] seems to have been overlooked 
by previous investigators. 

We turn our attention to the velocity distribution term in the liquid phase. In appendix B we 
consider the motion of  a single sphere in a potential flow with a velocity gradient. Straightforward 
calculations show that 

f u~2dV=27tR3u2+O(RS), 
"L 3 

where u ,  = < U G ) -  (UL). Using [7] we infer 
= ,  2 ~GU, + h.o.t. [19] 

Finally, we turn our attention to the pressure difference term. We have from appendix B that 

B(PL, -- <PL>) dS = --~R2OLU~ + O(RS). 

From which we infer, again using [7], that 

APb -- ' 2 --~pL U, + h.o.t. [20] 

Substitution of  [20] into [11] gives 

<PG>=(PL> I 2 -- ~pL U, + h.o.t. [21] 

Equation [21] is well known (e.g. Biesheuvel & van Wijngaarden 1984; Wallis 1989). Substitution 
of  [20] into [17] offers some simplification: a,,<,o>] 

<riG" n, A'pG, >, = -- <"L" nz A'pL, > = ~G "~- L at + a----Z-- + h.o.t., [22] 

where u, = <UG > -- <UL >. Equations [7], [9] and [19]-[22] complete the model. Their substitution 
into [5] and ignoring the h.o.t, terms yields the averaged momentum equations valid in the dilute 
limit. We find 

Fa~L<UL>+a__, , .2 ~ 2.7 O<pL> 2aEL EGPL(aU, aU,<UG>) [23a1 
.L L +IOL',TZ= k0,+ 0----;- 

and 
a 2} a 

PG~, ~ +~Z (G(u°).+E°~ (<pL)-¼pLu2")= 2 \W + az )" [23b] 

In the next section, we turn our attention to the variational method. Starting from the 
constitutive relation for the velocity perturbation term we shall show, by use of  this single 
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constitutive relation, that we can obtain all the constitutive relations characterizing the pressure 
field. This will, in the dilute limit, reconcile the averaging and variational approach. In the nondilute 
case the variational approach will lead to the form of the virtual mass acceleration with a single 
unknown coefficient function of the void fraction. 

3. THE VARIATIONAL APPROACH 

Traditionally, variational principles have been associated with problems of Hamiltonian 
dynamics. In continuum mechanics, the extension of Hamilton's principle is straightforward in a 
Lagrangian description. The difficulty arises when the Eulerian description is used. The main ideas 
which resolved this issue are due to Clebsch (1859) and Lin (1963). A discussion of the problem 
is given by Seliger & Whitman (1968), and the methodology is explained in Whitman (1974). 

3.1. Formulation of  the Lagrangian 

We follow the approach of Geurst (1985b), however since we consider the incompressible case, 
there will be slight differences, namely the introduction of an additional constraint. We shall also 
show that there is an implicit assumption in Geurst's derivation, which is that all of the gas bubbles 
in the averaging volume have the same velocity. The Lagrangian is defined as the difference between 
the kinetic and potential energy of the system. Since the two phases are considered incompressible, 
the Lagrangian reduces to the sum of the averaged kinetic energies of the two phases per unit of 
total volume: 

e=E 1 fv, k -~k IpkUk'UkdV 

and 

g =  ~ ½ £kpk(Uk" Uk), 
k 

where g~ is the kinetic energy density of the averaging volume. As before, we assume that the flow 
is one-dimensional in the z-direction, so that 

<uL > = <uL >n, 

and 

e-!y. >5 - 2 k EkPk(<Uk + <Uf>). [24] 

,2 It is clear from [24] that <uG > must be considered, although one is tempted to argue that since 
<UG > can play an PG is small its contribution will be small. However, we shall see below that ,2 

important role in the <u~. 2 > term. To see this, we first write the liquid velocity as 

uL = V(<uL>z + ~e). 

This must be true since we have taken the fluid velocity to be governed by potential flow. Assuming 
the bubbles move like rigid spheres the boundary condition on the j th  bubble is 

V~ .r~ = (UGj- <UL >n:) • riG, [25] 

where nG and UGj are the outward drawn normal and velocity of the j th bubble, respectively. The 
Reynolds stress term is then 

1 f IV~I2dV. [26] 1 lu~12dV =-~L vL 

Since the flow is incompressible then V2~ = 0. The equation for ~P is linear and the solution must 
be of the form 

N 

= I (tl~, -- (UL>nz) " ~,, [27] 
l=l 
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where N is the number of bubbles in the averaging volume and ~Fj is a vector-valued function that 
is entirely determined by the position of the bubbles. Substituting [27] into [26] produces: 

N N 
(u;' > = Y' Y. (uL (uL >n), [281 

*=Ij=l 

where the superscript T denotes transpose and A o is a 3 x 3 matrix for each i and j. The matrices 
A,j depend only on the position of the bubbles. We would like to express [28] in terms of the 
averaged quantities, (uo) and (UL), since that is not possible because of all the cross terms we 
assume, instead, that the bubbles have the same velocity in the averaging volume and move in the 
same direction as the fluid, therefore we take 

which of course implies that 

ucj= (uo>n, vj, 

(u~) -- 0. [29] 

This assumption was made implicitly by Geurst (I 985a, b, 1986). Substitution of this into [28] gives 

(IdL2)=( ~i-I j.l~ n~A°n') ((uo)-(uL))2" [30] 

The function multiplying ((u6)  - (UL))5 is solely determined by the configuration of the bubbles. 
Geurst's assumption was that [30] can be written as 

( u [  ~ ) = m(E6)((uG ) -- (UL ))2 = rn(E6)U2. [31] 

The coefficient m(EG) is a phenomenological relation that depends on the details of the flow 
configuration. It should not be confused with the virtual mass coefficient. It is another phenomeno- 
logical function that is quite different for nondilute bubbly flows. Wallis (1989) calls this the exertia, 
Smereka & Milton (1991) call it Reynolds stress coefficient. We know from [19] that in the dilute 
limit 

m = ½ 

For the sake of convenience, we will now drop all symbols denoting averaging. From [24], [29] and 
[31], the kinetic energy density of the two-phase mixture is 

K = ½ eLPLU~. + ½ ~LPLm(¢O)U 2, + ½ c.GpC, u~. [32] 

In the case of compressible flow, the Lagrangian is equal to the kinetic energy since there is no 
potential energy. However, no information concerning mass conservation is embodied in this 
expression. Thus, we must add to our Lagrangian, constraints expressing conservation of the mass. 
Following Geurst (1985b) we define the following constraints: 

//0E L 0£ L UL x O£G UG LI {~LPL ~'-~- //0EG CGPo~-~- [33] = ) ÷ ? 

where OL and Oa are called Lagrange multipliers (functions of z and t only). In addition, we shall 
treat the individual volume fractions as independent variables, thus it is necessary to add the 
following constraint, where ~ is also a Lagrange multiplier: 

L2 = ~a(~G "3 L eL). [341 

A similar constraint was used by Bedford & Drumheller (1978). Thus, our Lagrangian density is 
expressed as 

L = K + L~ + L2 [35] 

and the variational principle reads: 

 ffL zd/--0 E36  



74 c PAUCitON and P. SMEREXA 

where 6 is the differentiation symbol in the space of dependent variables (¢o, ~L, UG and uL). 
Application of the variational principle [36] for the four variables uL, q., uc~ and ~G yields: 

. , 0OL 
6UL: ~LPLUL -- eL rn~G)PL U, -- ~LP~--~Z = 0, [37a] 

and 

[00L u OOL~ 
&L: ½PLU2L+lm(eG)pLu2+O~--pL~-~T+ L--~Z j = 0, [37b] 

E DOG 6UG: GPGUG + eL m(eG )pL u, -- eGPG--~Z = 0 [38a] 

where the '  stands for differentiation with respect to ~G. Combining [37a, b] and [38a, b] to eliminate 
a~k/~z yields: 

i 2 | 2 a@L 
~ELPLUL --  ELPLm(Eo)UrU L - -  ~ELm(EG)pLU,  - -  ELO ~ 4- £LPL ~ ---- 0 [39a] 

and 

| 2 - -  2ELEO m (EG)pLu ,  - -  EGO~ + ~GPG ~ -~ 0.  [ 39b] [EGPGU G .jr. ELm(EG)pLUrU G / , 2 OOG 

3.2. Equations of motion 
T o  derive the equations of motion, we eliminate OG and @L using [39a, b] and [37a] and [38a] 

to obtain: 

//t~ ~ 2 ~ 2 '~ 00~t l , " 0EL PL ~.~'; EL UL + ~ZZEL UL + ~ZeL m(eG)u,) - EL "~Z + 2ELPL m (~G)U z, 

= +pL(~qm(eC)U,+~-~zq.m(eG)U~UG+~Lm(EG)U,-0;-'~). [40a] 

Similarly, 

( 0  0 2 )  0 ! , 2 
PG ~ e G U G + ~ z z E G U G  --  e G ~ ( t ~ + 2 E L p L m  (EG)Ur) 

=--pL(~ELm(EG)Ur-~-FZELm(f.G)UrUG-~-f.Lm(EG)Ur--~-Z-ZZ). 
Comparing [40a] with the averaged momentum equation [5] for phase L, we see that 

and further comparison reveals that: 

[40b] 

(1) The velocity distribution term is, as postulated, 

(u~. 2) = m(EG)U2,. [41a] 

(2) The phasic pressure difference terms are 

ApE, = ! , 2 [41b] - 2ELm (EO)PLUr 

and 
ApG , = 0. [41C] 

(3) The symmetric virtual mass acceleration is 

( 0  0 OUG ) 
(nG'n~Ap~,) ,=pL -~-teLm(eG)U,+~-ZeLm(eG)U, UG + ELm(eG)U,'~--Z . [41d] 
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Equation [41d] confirms the result obtained previously by Geurst (1986) who also shows that 
this acceleration is objective. A result similar to [41b] was also obtained by Lhuillier (1985). It is 
interesting to notice that since - O ,  is the average pressure then L2 is a work term since ~L and 

are akin to volumes. If we compare these equations with those obtained by Wallis (1990), we 
see that if his coefficient E plays the same role as our coefficient m, [41b] corresponds to equation 
[48] in Wallis's work, and if p, (the "interracial stress tensor") is identified to the dispersed phase 
pressure, equation [47] in Wallis (1991) is identical to [41a]. This shows that the two approaches 
lead to the same conclusion. Wallis (1990) does not propose a form for the mutual interracial force 
defined as f~. It is possible that if it includes a term equivalent to a dispersed phase pressure 
gradient, his equations of motion [37] and [38] will not be essentially different from the one 
proposed here. 

3.3. Generalized Bernoulli equations 
From [39a, b] we seek to derive Bernoulli type equations for each phase. These equations should, 

however, be independent of the phases, except for the velocity perturbation term which arises only 
in the continuous phase. In addition, these should reveal the energy exchange term corresponding 
to the "symmetric" virtual mass acceleration. Substituting - O ,  with PL and using [41a, b] leads 
t o "  

_l 2 , ,2 0OL 
2 PLeLUl + ~ pLeL (UL) -- eLm(~o)PLu, uG + ~rPL + PL¢L - ~  = 0 [ 4 2 a ]  

and 

000 
½ PGE~U~ + eL m(EG)PL U, UG + eGPG + ¢~PO - ~  = O. [42b] 

These are the Bernoulli equations for both phases. As anticipated, the velocity distribution term 
occurs only in the continuous phase. Interestingly, [42a, b] suggest that the energy exchange term 
is precisely 

eLm(eo)pLu, u~. [43] 

This energy transfer from the gas to the liquid is manifested by a lower pressure in the liquid phase 
due to the Bernoulli effect, see [41b], and by the additional kinetic energy associated with the liquid 
velocity fluctuations in the liquid. Thus, [42a, b] clarify the connection between the liquid velocity 
perturbation, the symmetric interracial momentum transfer term and the virtual mass force. Wallis 
(1990) also found similar Bernoulli equations and examined their consequences. 

3.4. Equivalence of the averaging and variational approaches 
To begin, we note that when eG "-* 0, eL ~ 1, m(eo) ~ eG/2 and m'(eG) ~ 1/2. Therefore, it 

follows that as e G ~ 0, [41a] and [41b] become 

(u~2) =l 2 [44a] ~eGUr  

and 

APL, = -- ¼ PL u, z, [44b] 

respectively, which are in agreement with [19] and [20]. Next we write [41d] as 

( ~ t O U ,  UG'_ , Ouo~z (n G • n, Ap~, >, = pLm(eo)eL --b --~--z ) + pL[m(eo) - -  eLeGm (eG)]U, • 

Notice that in the dilute limit m(eo)= ½ec, so the above expression becomes 

/Ou, Ou, uo <~" nZ APGI > . = ½ ~0LeG~" ~- + ~), [44C] 

in agreement with [22]. Therefore, [44a--c] show that the averaging approach yields identical 
equations to the variational approach in the dilute limit. This means that the dilute limit of [40a, b] 
is identical to [23]. 
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3.5. Discussion 
It has been estabhshed by Geurst (1986) that the form of the "symmetric" virtual mass 

acceleration given by [41d] is objective when written in three-dimensional form. Geurst's result is 
valid for any m(~o), therefore if we take m(eo) = ½Eo we infer that the three-dimensional form of 
[44c] is also objective. There is a direct way to see that the "symmetric" virtual mass must be 
objective from the work of Gurtin & Struthers (1991). They show that any interfacial force that 
acts on an interface of zero mass must be objective. In this case, the interfacial force comes from 
the interracial pressure and we assume the interface to have no mass. 

The discrepancy between [44c] and the virtual mass acceleration proposed by Pauchon & 
Banerjee (1986) or Drew & Lahey (1987) amongst others, shows that the symmetric virtual mass 
acceleration is actually the sum of the acceleration commonly used, 

, f a u ,  ~ O U ° ~ z )  avM =2 P L e G ~ -  + UO -- UL , [45] 

plus the contribution of ApL, as explicited in [17]. The difference between [44¢] and [45] arises from 
the liquid pressure gradient (or virtual buoyancy term) which enters partially in [44c] and [22]. 

The results contained in [41 a-d] show that the form of the constitutive relationships is determined 
solely from the expression for the Reynolds stress term. Thereby indicating that the constitutive 
laws for the phasic pressure difference Apu, the Reynolds stress (u~') and the "symmetric" virtual 
mass term (nk'n, Ap[),  are intimately related. Erroneous conclusions may be reached if these 
terms are approached independently. 

To include bubbly flows with higher void fractions, we may use the constitutive relations [41a-d]. 
However, the problem of determining the form of m(~o) remains. Wallis (1989) and Smereka & 
Milton (1991) have related m(~o) to the effective conductivity of a composite material containing 
a uniform conductor and insulating spherical particles. This allows m(EG) to be determined for 
nondilute mixtures. The importance of this function will be discussed in the next section. 

4. PROPERTIES OF THE EQUATIONS OF MOTION 

In this section we shall outline several important properties of equations describing the flow of 
two-phase dispersed mixtures. To begin this analysis we reduce the model to a set of two equations, 
using the drift flux concept, see Zuber (1964), Wallis (1969) or Pauchon (1989). 

4.1. The reduced system 
Adding both mass conservations [la] gives: 

aj_._00 = 0, J0 = EG UG + ~L UL, [46] 
OZ 

since ~o + EL = 1. This means that J0 is only a function of t, and determined by the boundary 
conditions. We shall take J0 to be a constant and consider the transformation 

and 

Then the velocities transform as: 

more specifically 

and 

z* = z --jot 

t*=t.  

U~ ~ U k --Jo, 

U~ -~- --C.GU r 

U~ ~ C.L U r. 



MOMENTUM INTERACTIONS IN DISPERSED FLOW 

The mass conservation equations transform as 

&~ &~U~=o 
b'-[ -~ + dz* -" 

77 

Substitution of u~' and u~ into the transformed equation shows that both conservations become 
identical: 

&G aJ  
~gt* + ~ = O, J = EoELU,, [47] 

where J is known as the drift flux. In the following analysis, we propose to drop the * sign and 
we set: 

EG-~-~  , EL~--- 1 - - E .  

Substituting the transformed velocities into the expression for the kinetic energy gives: 

K = ½ r (E)J:, [481 

where 

r ( o  = 

The new Lagranglan can be written as 

PL +P_.GG "1 pLm(E) 
1 - -  E ~ (1 -- E)E 2" 

\ot  + 
[49] 

a n d  

0¢ OJ=O [51a] 
+~z  

0 ( ½ r , : )  = 0. Dlb]  

The first equation expresses mass conservation and the second equation is a slip equation, written 
in a frame of reference moving at the velocity J0. In [51a, b] we recognize the form of the slip 
equation derived by Pauchon (1989) in the case of a single pressure model (by setting m -- 0). Note 
that in [51 a, b] the presence of the virtual mass does not modify the structure of the slip equation. 

4.2. Hamiltonian formalism 

We now propose to derive the equations of motion in yet another way in order to clarify the 
Hamiltonian formalism of the equations of motion. The first part of this derivation is inspired by 
the work of Seliger & Whitham (1968). 

using - • instead of • as a matter of convenience only. The variational principle reads 

f L  dz dt -- O. 

Computing the variation of L we find: 

&: ½F~(E)J ~ + ¢,, = 0 [50a] 

and 

6J: JF  + O, = O, [50b] 

where the index E indicates differentiation with respect to the variable E. 
One can eliminate • to obtain an equation for J, which combined with the constraint of mass 

conservation yields the reduced set of equations: 
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From the variational method, we see that J F  - -Oz.  Substituting this into the expression for 
the kinetic energy and using integration by parts on the constraint yield an equivalent Lagrangian: 

1 o 2 
L* = - ~ T + ~o,. [52] 

The important point here is that by the use of a potential representation for FJ,  we can eliminate 
the explicit appearance of the constraints. One can readily verify that 

6 .fL* dt dz = 0  

yields the equations of motion. We shall use L* to derive the Hamiltonian. 
To form the Hamiltonian, one can simply follow the natural generalization of Hamiltonian 

mechanics from discrete systems to continuous systems (e.g. Leech 1965). The generalized velocity 
is O,, and consequently the generalized momentum is 

and the Hamiltonian density is given by 

dL* 
00, -- E 

aL* L*. H = ~-~-Ot-  

Thus, the Hamiltonian is 

Jr' - H dz = ~-~ dz. 

The canonical variables are (O, E), consequently the equations of motion are 

[53] 

O,= & = ~ O ~  [54a] 

and 

6J~ (Oz) [54b] 
" =  - ~ - - -  T z "  

Unfortunately, these equations are written in terms of a potential, which is not a physically 
interesting variable. To transform the problem to physically relevant quantities, it is useful to 
introduce the Poisson bracket: 

_ \ ~ o  & ~o  & dz, [55] 

where #" and ~ are functionals of • and E [see, for example, Morisson (1981) or Holm & 
Kupershmidt (1983)]. The equations of motion are 

We shall now use the Poisson bracket to transform the equations of motion. We have 

then the Hamiltonian becomes 

F J  = - Oz = M ,  [56] 

~---  _ Tfi dz 

and by the chain rule for functional derivatives (Morisson 1981) we have 

6#" a 8#" 
•M az 60 

[57] 
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Substituting this into the Poisson brackets and using integration by parts we find 

{~' ~} = - ~ Oz & "¢ & Oz ~-M dz. 

Thus, we can write the equations of  motion as 

[58] 

and 

then one finds: 

e t={e,  J f } =  az6M=-az " 

We note that the bracket for these equations has a slight similarity to the Poisson bracket for 
compressible flow (see Holm et al. 1985). 

4.3. Hyperbolicity 

We write our equations of  motion as 

MF, 

( )  . e + 

M ,  
- - T \ r  }, 

The eigenvalues of  the above matrix determine whether or not the model is hyperbolic. We find: 

~± Mr,[_ {2r~-rr.y :2] 
r" L i_+ ~. 27,~ } j t61] 

Therefore, the model will be hyperbolic if 

2 r  2 - rr. > o. [621 

This result is surprisingly simple, considering that it applies to a broad class of  two-phase flow 
models. To investigate the consequences of  the above condition, we take 

m(e) -- c#(1 + cle), [63] 

2F 2 - FF~ = 2pL(1 + Co + coej )(PG + C0PL) 
3(1 -- ¢)3 [64] 

Thus, we see that if the virtual mass is neglected (set Co -- 0), then the model is not hyperbolic. This 
is consistent with the fact that the single-pressure model of  two-phase flow is ill-posed. For spherical 
particles, we know that Co-- 1/2. Therefore, the hyperbolicity condition is 

cm + 3 < 0. [65] 

As mentioned previously, the function m(eG) has been studied. This work shows that for random 
isotropic distributions of  bubbles ct -- 0, which indicates that the model is not hyperbolic. However, 
Smereka & Milton (1991) show that if the bubbles cluster, the resulting equations are found to be 
hyperbolic. 

4.4. Lyapunov stability 

In this section it will be proved that the condition for Lyapunov stability coincides with the 
hyperbolicity condition. The basic ideas as well as an overview of  the subject and its applications 
can be found in Holm et al. (1985). The first step is to find as many conserved functionals as 
possible. For example, mass, momentum and energy. We then take an arbitrary linear combination 
of  these, which we call ~ ' .  Then one must show that there are solutions of  the equations of  motion 
which are critical points of  j r .  The more general one can make # ' ,  the wider the class of  solutions 
one can study. After ensuring 6~ r ffi 0 for some solutions, one computes the second variation 62J r 

-- 0. [60] 

M, = {M, ~ }  = Oz & = ~z \ -TF T-] [59a1 
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for these critical solutions. If one can show that 62~r is definite in sign, then 62~ can be used as 
a norm to measure the distance in the space of variables, between a given solution and the critical 
solution. Further, since ~" is a conserved quantity, this norm can be controlled by the initial 
condition. Thus, linear Lyapunov stability is established for critical solutions. To begin, we list the 
constants of motion: 

i66 ] 

~ -oo 
8 = e dz, [66b] 

co 

= _ ~ dz [66c] 

and 

~e=fL°°M~dz._ [66d] 

The first two follow from the conservative form of the equations of motion, the next is a statement 
of energy conservation and the last is obtained using the translation invariance of the equations 
of motion and Noether's theorem (see Geurst 1985b). One may verify that they are constants of 
the motion by using the Poisson bracket, e.g. 

and 

Consider the following functional: 

X ~, = {~ ,  ~ }  = 0 [67a1 

~,  = {~, ~ }  = 0. [67b1 

= ~ + a i J / +  a28 + a3~. [68] 

Computing the first variation of ~- gives 

6.~= -oo +al+a3E 6 M + \  ~ ~-a2+a3M & dz. [69] 

We wish to find solutions such that 63~" = 0. Clearly given any constant solution, we find at and 
a2 such that this condition is satisfied. Next we evaluate the second variation of 3~" at the constant 
solution: 

F,M 2F~ - FF~ 2 6 2 , = [ + ~ F ( 6 M ) ' + 2 ( a , - . - ~ - ) & 6 M + (  • -2~ z .)(&)]dz. [70] L--Y- 
The definiteness of 62~ can be optimized by choosing a3 as 

MFc 
a3= F 2 .  [71] 

Notice that -a3  is precisely the propagation velocity C of the energy density (see Whitman 1974), 
defined by 

~H ~CH 
-~- + T = 0. [72] 

Now given [71], it is apparent from [70] that the linear Lyapunov stability condition can be written 
a s  

t~2~  " > 0 if 2El - FF,, > 0 .  [73]  

Comparing [62] and [73] shows that the conditions for hypcrbolicity and for linear Lyapunov 
stability coincide. In this problem, the higher order terms (6 a~') arc simple, and a straightforward 
argument could show that this is also the condition for nonlinear stability (see Holm et al. 1985). 
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Finally, we mention that if the hyperbolicity condition is met, then it is possible to show that 
the 2 x 2 system of equations given in [60] is genuinely nonlinear in the sense defined by Lax (1973). 
This means that the characteristic speeds increase along the eigenveetors. The upshot of this is that 
shock waves will develop in a finite time. 

5. CONCLUSIONS 

The present study exemplifies the complementarity between the variational approach based on 
an energy functional, and the averaging approach based on the local instantaneous equations. The 
former leads directly to the equations of motion, but does not keep track of the physical significance 
of each term appearing in the equations. On the other hand, the averaged equations help classify 
these terms into a set which is clearly identifiable. In this case: 

• The "symmetric" virtual mass acceleration (nk'nz Ap~,),. 
• The phase pressure difference term Ap~. 
• The Reynolds stress due to the presence of the dispersed phase (u[  2). 

We first derive these terms by volume averaging. Then starting from the kinetic energy imparted 
to the continuous phase by the presence of the dispersed phase, we deduce the form of the 
symmetric virtual mass acceleration using Lagrangian variational methods. 

In particular, it is shown that the virtual mass acceleration, the phasic pressure difference and 
the Reynolds stress associated with the velocity perturbation in the continuous phase, are three 
undissociable and complementary manifestations of the interactions between the phases in 
dispersed flows. Separate Bernoulli type equations are derived for the individual phases, and we 
identify an energy exchange term due to the relative velocity. Our analysis shows that the result 
from Voinov (1973) on the virtual mass was interpreted incorrectly, and that it actually leads to 
an objective acceleration in three dimensions. Furthermore, we show that in the dilute limit the 
model is never hyperbolic. It is conjectured that the effect of bubble interactions might make the 
model hyperbolic. 

The Hamiltonian formalism of the model is investigated using a reduced set of equations based 
on the drift flux concept. It is shown that the linear Lyapunov stability condition coincides with 
the hyperbolicity condition. 
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APPENDIX A 

Here [14] and [15] are established. We will first show 

-~ Phn,'n~dS=-~z e~ a (Pt,), R-~--fz --if- . 
[A.1] 

To begin, we split this into two terms: 

l f o  l f ~  l~d  -f  pt~nL'nzdS=-f  pL, nL" nzdS + ~ pL, nL " n~ dS, [A.2] 
t • IB 

where ~,v and a,e are the surfaces of the bubble that intersect the averaging volume but are 
contained inside it. To proceed it is useful to introduce the following definition: 

/~L,(Z') = N,£TrR2j~, PL, dS, [A.3] 

where NI is the number of spheres that intersect the plane z'; ~t~(z') is then the average interfacial 
pressure of the bubbles that intersect this plane. We now use [A.3] to rewrite [A.2] as 

p pt~nL" nz dS = p [PL, --PL,(Z + H)]nL • nz dS 
T 

"]- p [eLi --/~L,(Z)]nL" n: dS 
B 

+ p PL,(Z + S ) ~ "  n. dS 
T 

l f~ ,  + p /JL, (z)nt  • n, dS. [A.4] 
B 
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By definition/~L, does not vary when integrating around the bubbles at a fixed value of z. Therefore, 
the last two terms of [A.4] are equal to 

Hlf  1 :t,(z + )-~ nt'n, dS + PL1(Z) I nt'nzdS = p {pL1(Z + H)AG(z + H)-fu(z)Ao(z)}, 
ff B 

where Ac(z*) is the area of the gas phase at the plane z = z*. Now using the Leibnitz formula, 
the above expression is 

~z+H 

1 ~ | :L,(Z')AG(Z') dz'. [A.5] 
VOz j~ 

To study [A.5] further we split it up among the bubbles. Therefore, we write 

"~ pL,(Z')AG(z') dz" = ~ : .  j , ,-R :L'(7"')AoI(Z') dz', [A.6] 

where AGj(z*) is the area of the j t h  bubble that intersects the plane z = z *  and zj is the location 
of the center of the j t h  bubble. Notice if AG: (z*) = 0 i f  z * is outside the averaging volume and that 

;zj zy AGj(Z ") dz' = zj, [A.7] 
+ R 

- R  

where ~ is the volume of the j th  bubble that is contained in the averaging volume. Now we expand 
PL,(Z') in a Taylor series about zj. Therefore, 

IOL,(Z')  = f fL , (Z , )  + p L , ( Z j ) ( Z '  - -  Zj)  "[- " ' ' .  [A.81 

Clearly/~[,(zj) must be small because if we change zj by a small amount to zj + h then the plane 
at z = z: + h must still intersect mostly the same bubbles. Indeed, using [A.3] one can establish that 

-, { 1 0EG\ 
p~,(z~) = o( ; -~z  ). [A.9] 

This result explained simply by the fact that E~ ~ 0,Eo represents the relative change in N~ as one 
varies z. The e6 ~ term seems to be problematic but we shall see below that it poses no problem. 
Substitution of [A.7]-[A.9] into [A.6] gives 

- :L,(z')A~(z') dz = 7) ~Pu(z~)~ + 0 R . [A.101 
g d z  r j =  1 

We write the sum as 

1 N 1 4 3 ~ 1 :¢ -: ,~,= :L,(z)~, = - :  ~ ~R ,-Y, :L,(z,) + -O_ ,.,Y. :L,(z,)~,, [A. l l] 

where A7 is the number of bubbles that do not intersect the averaging volume and .~ is the number 
of bubbles that do. Since N is O(EGRN/H) then it follows that the second term in [A.11] is 
O(EGR/H). Further, it follows from the definition Of:L, that the first term of [A.11] is equal to 

47tR 3 ~ 1 f '  
j~=l ~ ~B, pL, dS. [A. 12] 

3V 

Therefore, combining [A.12], [A.l l] and [A.10], we have: 

( ) V fiL,(Z')AG(z')dz" 4~R3 ~ ( 2 R -- ---- - ~ "  pL, d S + O  R + O  e o ~  ; 

which to the same approximation is 

1 ( 'z+M V ( &o'~ (_~) 
p J, pL,(Z')Ao(z')dz=~EG(pL,)+O R Oz ] + O  R . [A.131 
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Now substituting [A.13] into [A.5] and combining with [A.4], we have: 

v I , . ,  v oz, 

+ p [PL, -- ~0,(Z + H)InL" n. dS + p [p~ - p,(Z)lnL" n. dS. 
iT B 

The last two terms must be small since the average part has been subtracted out. Therefore we 
conclude thay they must be O(z2~/V)= O(E~R/H). Thus, [A.I] has been established. 

Next we turn to demonstrating that [15] is true. We have 

l f ~  1 __~| fn ~ " ~  pEtriE • n, dS = p j  P L ,  giL " n, dS, [A.14] 
i 

where Bj is the j th  bubble totally enclosed by the averaging volume and ~ is the number of such 
bubbles. To develop this expression further we write it as 

p ~=, pL, nL'n, dS=---~,~ (pL,-p,o)na'n, dS--~,~ p, ona • n, dS, [A.15] 

where &o represents the pressure field if the j th  bubble was not present. The reader is reminded 
that here we have used n L = - - g l  G . Since Pj0 is the pressure field when there is no bubble present 
it must be close to the average liquid pressure. However, it will vary slightly within the averaging 
volume. We expand Pj0 about the average liquid pressure: 

Pjo = (PL ) q- 0--(~--) 2 (Z' -- gm,d ) + " "  " ,  [A.16] 

where z' is the coordinate in the averaging volume and Zra,d is the middle of the averaging volume. 
Substituting this into [A.15] gives: 

1 ~ f_ N'~O(PL)v 0-~ ~ , ~  J'~JPJ°nc • n~ dS = + h.o.t. 

O<pL> 
= EG 0----~ + h.o . t . ,  [A.17] 

since 

EG = T + k--H--J; [A.181 

where H is the height of the averaging volume. The second term in [A.18] arises from the fact the 
bubbles on the boundary make a very small contribution to the void fraction. PL, --&0 represents 
the disturbance in the pressure field caused by the introduction of a bubble. Since we have assumed 
that all bubbles in the averaging volume have the same velocity then it follows that 

Vj~I= (PL,--P~0)nG" n~dS = -4-:'-~3g~R p[,nG, n, dS u \ _ _ / ,  [A.19] 

where p [, = P u -  PL0 and we have used [A. 18]. The higher order term is similar to the previous 
equation. Substituting [A. 17] and [A. 19] into [A. 15] gives [15]. 

A P P E N D I X  B 

Here we derive several formulas needed in section 2.2. In order for the averaged equations to 
be Galilean invariant it is important to include gradients in the calculation of these terms. We are 
interested in potential flow around a sphere, but first we consider the velocity potential without 
the presence of the sphere. Since the flow is incompressible we have 

UL = --V'l~0, where V2~0 = 0; [B.I] 
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where ¢o is the undisturbed velocity potential. The simplest potential function that produces a 
liquid velocity with a gradient is 

C~o = -v( t )r  cos 0 - ~ r2(3 cos 20 - 1), [B.2] 

where r and 0 are spherical coordinates and z = r cos 0. From [B.2] it is easy to see that 

UL" n~ = v(t) + a(t)z [B.3] 

and 

UL(Z ~- O) = v(t) and aUL = a(t). lB.4] 
a Z  z - O  

Now we introduce a sphere of  radius R into the flow that is placed at z = 0 and is moving with 
a velocity uG = UG(Z, t) in the z-direction. We look for a new velocity potential satisfying: 

(i) ~b(r--*oo) = ¢o. 
(ii) W~b = O. 

(iii) V ¢  • nG = --  uG(n~" riG). 

The solution to this problem can be computed using Weiss's sphere theorem (see Milne-Thomson 
1968) and the result is 

where 

¢ = ¢o+  ¢ ' ,  

c~ '=(uG-v)R3cOsO aRS(3cos20 -1) ,  [B.5] 
2r 2 6r 3 

and we are now in the frame moving with the bubble. The pressure equation in a frame moving 
with the bubble is 

pL +½,V~b 12 (a~b) - -  -- +uGn," Vck = c(t), 
p ~ G  

where the subscript G emphasizes that the time derivative is really a material derivative. Since 
pL(r ~ 00) = po(r ~ oo), where Po is the pressure with no bubble we can eliminate c(t) and we find 

PL --P0 = -- ½1V¢'l ~ - (u~n, + V~o)" V4~'. [B.6] 
PL \ /G 

Therefore, we have 

fBP~nG.nzdS=2nR2 f : [ ( ~ f  ) --½lVdP'12--(uGn:+ V¢o) .V¢' ls inOcosO d0. [B.7] 
PL G 

Substitution of  ¢0 and ¢ '  into [B.7] yields, after straightforward calculations, 

p i n  G • nz dS = ]rcR3pL -- ~ + a(t )[uG(t ) -- V(t)] . [B.8] 
G 

Substituting [B.4] into [B.8], we have 

\ at ] c  + (uo - UL) aZ J,=o" 

Transforming back to the lab frame we have 

( auo 0.o auo 
a t , I G = ~  + uG az 

and  

( = aUL aUL 
at ]~ -Ti- + UG az " 
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Interpreting u L as an average velocity we have 

_~7cR3 ~ /'DGuG DLD~L>) .i." O(R5). [B.9] IBprL nG " IIz --3 PLy" dS 

However, we have ignored higher order effects by our choice of potential function. We infer from 
the work of Voinov (1973) that the error in the above expression is O(RS). The velocity fluctuation 
term is 

f u[ d V = f  IV(~-~0)[ 2 d v  
V L V L 

27~R 3 
- ~ (uG - -  v )  2 + O(R5). [B.  10] 

3 

Also we, have 

f B (PL -- < PL > ) dS = IB (PL -- po ) dS + I (Po -- ( PL > ) dS. 

The first term is found by using [B.6] and the second term using [17]. The second term is zero except 
for O(R 5) terms. We find 

fB(pL -- >) dS = --pLnR2(uo -- V) 2 + O(RS). [B. 1 I] <PL 

Both [B.10] and lB.11] are revealed by straightforward integration in spherical coordinates. 


